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A B S T R A C T   

Research that analyzes the effect of different environmental factors on the impact of COVID-19 focus primarily 
on meteorological variables such as humidity and temperature or on air pollution variables. However, noise 
pollution is also a relevant environmental factor that contributes to the worsening of chronic cardiovascular 
diseases and even diabetes. This study analyzes the role of short-term noise pollution levels on the incidence and 
severity of cases of COVID-19 in Madrid from February 1 to May 31, 2020. The following variables were used in 
the study: daily noise levels averaged over 14 days; daily incidence rates, average cumulative incidence over 14 
days; hospital admissions, Intensive Care Unit (ICU) admissions and mortality due to COVID-19. We controlled 
for the effect of the pollutants PM10 and NO2 as well as for variables related to seasonality and autoregressive 
nature. GLM models with Poisson regressions were carried out using significant variable selection (p < 0.05) to 
calculate attributable RR. The results of the modeling using a single variable show that the levels of noise (leq24 
h) were related to the incidence rate, the rate of hospital admissions, the ICU admissions and the rate of average 
cumulative incidence over 14 days. These associations presented lags, and the first association was with inci-
dence (lag 7 and lag 10), then with hospital admissions (lag 17) and finally ICU admissions (lag 22). There was 
no association with deaths due to COVID-19. In the results of the models that included PM10, NO2, Leq24 h and 
the control variables simultaneously, we observed that only Leq24 h went on to become a part of the models 
using COVID-19 variables, including the 14-day average cumulative incidence. These results show that noise 
pollution is an important environmental variable that is relevant in relation to the incidence and severity of 
COVID-19 in the Province of Madrid.   

1. Introduction 

In analyzing the impact of different environmental factors on the 
incidence and severity of COVID-19, studies focus primarily on the role 
of meteorological variables or air pollution variables. In terms of 
meteorological variables, the majority of studies consider temperature 
and humidity (Holtmann et al., 2020; CDC, 2020; Lipsitch& Phil, 2020; 
Tobías et al., 2020; Sajadi et al., 2020). Other studies also consider pa-
rameters such as ultraviolet radiation (Yao et al., 2020) and wind speed 
(Islam et al., 2020) as atmospheric variables that can affect the spread of 
SARS-CoV-2. Other research focuses on geographic factors such as lati-
tude, which indirectly represents conditions of temperature and hu-
midity, which could explain the behavior of the spread of the virus 

(CEBM, 2020). 
On the other hand, the existence of a clear mechanism through which 

air pollution can affect the immunological system as well as the wors-
ening of respiratory, cardiovascular and endocrine illnesses (Sood et al., 
2018; Domingo Rovira, 2020), upon which COVID-19 also acts (Hu 
et al., 2020; Arentz et al., 2020) is still unclear. Thus, multiple studies 
have been recently carried out that focus on the effect of particulate 
matter, specifically on concentrations of NO2 (Comunian et al., 2020; 
Zoran et al., 2020; Zhao et al., 2020; Ogen et al., 2020; Setti et al., 2020; 
Bontempi E., 2020). Some studies even analyze the joint effect of 
meteorological variables and air pollution variables (Linares et al., 
2021). 

The definition of air pollution includes “the presence of substances or 
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energy forms in the air …” (BOE, 2007), and a clear biological mecha-
nism exists by which noise affects the immune system (Recio et al., 
2016). Exposure to noise also worsens—over the short-term—the same 
pathologies as air pollution (Recio et al., 2017; WHO et al., 2018) and 
sometimes has an even greater impact than does air pollution (Tobías 
et al., 2015). Despite this, there is practically no study that analyzes the 
impact of exposure to noise on the incidence and severity of COVID-19. 
The studies that have been carried out related to the possible relation-
ship between noise and COVID-19 concern the decrease in hospital ad-
missions due to cardiovascular causes resulting from the registered 
decrease in the levels of noise during the confinement (Dutheil et al., 
2020). 

On January 31, 2020, the first case of COVID-19 was registered in 
Spain, and by May 31 there were 239,429 registered cases and 27,127 
deaths. At that time, Spain was European country with the third highest 
numbers in terms of confirmed cases, after Russia and the UK (MSCBS, 
2020a). More than 28.7 percent of cases occurred in the region of 
Madrid, and Madrid accounted for around 32 percent of the total 
number of fatalities registered in Spain. Madrid was the region in Spain 
with the greatest number of cases and deaths (MSCBS, 2020a). 

On the other hand, nine million people in Spain endure noise levels 
above the 65 dB recommended by the World Health Organization 
(WHO). In fact, 72.3 percent of Spaniards believe that they live in a 
noisy city. In Madrid, 92.9 percent feel this way, and Madrid is the city 
with the highest percentage, followed by Barcelona and Seville 
(DKV-GAES, 2015). 

The objective of this study was to analyze the possible daily rela-
tionship that exists over the short-term between noise levels registered 
and 14-day averages in Madrid and rates of incidence, 14-day average 
cumulative incidence, hospital admissions, Intensive Care Unit (ICU) 
admissions and deaths due to COVID-19 during the period of February 1 
to May 31, 2020. We controlled for the effect of the pollutants PM10 and 
NO2 and for different confounding variables. 

2. Materials and methods 

2.1. Dependent and independent variables 

The COVID-19 positive case data were based on a positive result of 
the PCR test, for 99.74 percent of the data. The rest were diagnosed 
based on symptoms compatible with the disease. 

Cases defined in this way refer to daily cases in the Province of 
Madrid that occurred during the period of February 1 to May 31, 2020. 
During this period a state of alarm was declared, and the population was 
confined homebound except for essential travel, beginning on March 14, 
with restrictions on movements and social interactions (BOE, 2020). The 
state of alarm remained in place until June 21, 2020 (BOE, 2020b). 

The data analyzed correspond to the number of cases diagnosed as 
COVID-19 positive in different categories: number of cases, number of 
emergency room admissions, number of Intensive Care Unit (ICU) ad-
missions, and the number of deaths due to COVID-19. Data were pro-
vided by the National Center for Epidemiology at the Carlos III Health 
Institute. The population data for the Province of Madrid were provided 
by the National Statistics Institute (NSI). Based on these data, we 
calculated the following rates: 

COVID-19 incidence rate per 100,000 inhabitants: (Number of COVID- 
19 positive cases/population) X 100,000 inhabitants. 

Rate of emergency room admissions for COVID-19 per 100,000 in-
habitants: (Number of COVID-19 positive emergency room admissions/ 
population) X 100,000 inhabitants. 

In the case of ICU admissions and deaths, rates per million in-
habitants were used, to result in a lower number. 

Rate of ICU hospital admissions for COVID-19 per 1,000,000 in-
habitants: (Number of COVID-19 positive ICU admissions/population) X 
1,000,000 inhabitants. 

Rate of deaths due to COVID-19 per 1,000,000 inhabitants: (Number of 

COVID-19 positive deaths/population) X 1,000,000 inhabitants. 
Average cumulative incidence over 14 days: Average value of positive 

COVID-19 cases over a period of 14 days. 
The independent variables were made up of noise levels and data on 

air pollution. 
Noise level data refer to 24-h average values (Leq24 h) in A-weighted 

dB—dB(A) (Leq24 h) —obtained based on information from the sources 
(IOS, 2017):  

- The noise monitoring network of the City Council of Madrid, made 
up of 30 operating stations (Ayuntamiento de Madrid, 2020).  

- The noise monitoring network of the Spanish Airport Navigation 
Area (AENA), made up of a total of 22 stations distributed in different 
municipalities of the Province of Madrid, in the area covered by the 
Madrid Barajas airport (AENA, 2020). 

Each element in the data series consists of the arithmetic average of 
the indicators obtained for the 52 monitoring stations, which charac-
terize the total noise, without separation of the sources of sound. The air 
pollution data are made up of the average daily values of concentrations 
of de PM10 and NO2 in μg/m3, obtained as an average of the values 
measured at the stations located in the Community of Madrid. These 
data were provided by the Spanish Environmental Ministry (MITECO). 
The average daily values were used to calculate the 14-day average 
values for these independent variables. 

As control variables, meteorological data have been used: Daily 
maximum temperature and absolute humidity. These values made up 
the average values of the observations corresponding to the AEMET 
stations located in Madrid. They were provided by the State Meteoro-
logical Agency (AEMET). 

2.2. Analysis methodology 

Generalized Linear Regression Models (GLM) with Poisson link were 
developed based on the dependent variables (average rates and inci-
dence of positive COVID-19 cases) and the independent variables (noise 
and air pollution). These models controlled for the series trend and 
seasonality of 120, 90, 60 and 30 days as well as the autoregressive 
nature of the series. We also controlled for weekly seasonality by 
including the days of the week as dummy variables in the models. For 
example, when the data correspond to Tuesday, the value in the data cell 
corresponding to the variable “day of the week” is equal to 1; all the 
other days of the week for the same data are zero. 

First GLM were carried out between each dependent variable and the 
average daily values of the independent variables and later with the 14- 
day average values of the independent variables. The modeling process 
using a single variable served to establish the time lags in which sta-
tistically significant associations were produced between the dependent 
variables, referred to as lags, and the independent variables. 

The lags considered were those of up to 28 days, given that the 
average time between infection and death tends to be around 18 days 
(Verity et al., 2020), although there are other studies that stretch it to up 
to 2 months (Chu et al., 2004) Later, multivariate models were carried 
out that included the noise variable (Leq 24 h) and the air pollution 
variable (PM10 and NO2) and took into account the aforementioned 
control variables. 

A weekly distributed lag model was used. In a first step, the lags were 
introduced for the independent variables from 0 to 7 days. In a second 
step, the lags corresponding to 8–14 days were introduced, while 
maintaining the lag variables that were statically significant in the first 
step, and so on up to 28 days to complete the range of lag days 
considered in the analysis. 

Based on the values of the estimators, relative risks were calculated 
(RR) in the form RR = eβ with β being the value of the estimator obtained 
in the Poisson modeling. 

A negative coefficient in the estimator indicates that an increase in 
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the value of the independent variable is associated with a decrease in the 
value of the dependent variable. The RR is calculated by an increase of 
10 μg/m3 of PM10 and NO2 and 1 dB(A) in the Leq24 h value. 

The variable selection method used was back-stepwise and associa-
tions with p < 0.05 were considered to be statistically significant. We 
controlled for over- and under-dispersion. 

3. Results 

69,987 cases of COVID were registered during the period analyzed, 
with a maximum daily value of 2834 cases and a minimum of two. Of 
these cases, 33,570 (47.96%) were admitted to the hospital (2.93%) 
were admitted to the ICU and 8306 people (11.87%) died. 

Table 1 shows the descriptive statistics for the incidence rates, rates 
of hospital admission and ICU admission, death rate and the average 
incidence over 14 days. Fig. 1A and B shows the time evolution during 
the period analyzed, which corresponds to the so called “first wave,” as 
can be observed. 

The descriptive statistics of the independent variables also appear in 
Table 1. Fig. 2A and B shows the time evolution for both PM10 and NO2 
and for Leq24 h, which shows an abrupt decrease in these values. It is 
especially marked in the case of Leq24 h, where the range of variation in 
the values of Leq24 h is of 10.2 dB(A), compared to 80 μg/m3 for PM10 
and 54.8 μg/m3 for NO2. 

Table 2 shows the Pearson bivariate correlation coefficients between 
the independent variables, with statistically significant associations 
between all of the variables considered. It should be noted that there is a 
high correlation (0.672) between the values of NO2 and Leq24 h, 
whereas the correlation between PM10 and Leq24 h is slightly lower 
(0.391). 

Table 3 shows the results of the single variable modeling in relation 
to the average daily values. The noise measured via Leq24 h is related 
both to the incidence rate as well as the hospital admission rate, ICU 
admissions and the cumulative incidence rate over 14 days. These as-
sociations show time lags, the first of which is associated with incidence 
(lag 7 and 10), and later hospital admissions (lag 17), and finally ICU 
admissions (lag 22). There was no association with deaths due to 
COVID-19. Table 3 also shows the single variable models for PM10 and 
NO2. 

Table 4 shows the lags in which associations are produced for the 14- 
day average variables, and they show very similar behavior to what was 
obtained for the daily values. 

Table 5 shows the models with all of the variables, which simulta-
neously include PM10, NO2 and Leq24 h and the control variables for 
both the daily values as well as the 24-h average values. As shown in the 
table, Leq24 h is the variable that would become a part of all of the 
models used with the COVID-19 variables, including cumulative average 
incidence over 14 days. 

In terms of the meteorological variables used as control variables, the 

GLM models show that the coefficients related to COVID-19 variables 
are negative. 

4. Discussion 

One fact worth highlighting related to the COVID-19 variables is the 
high proportion of admissions for the cases detected, which was over 47 
percent. Also notable is the high percentage of deaths, which was around 
12 percent, much higher than the 4 percent that was established by the 
WHO as the worldwide death rate with respect to those diagnosed 
(WHO, 2020). The cause of these high percentages is probably the fact 
that during the period in question, Madrid only provided PCR testing to 
those people who presented symptomatology of a certain level of 
severity. This was shown in a study of the prevalence of SARS-CoV-2 in 
Spain (ENE-COVID) (Pollán et al., 2020) that stated that, “one in three 

Table 1 
Descriptive statistics of the COVID-19 rate variables and independent variables 
analyzed during the period 02-01-2020 to 05-31–2020.   

Maximum Minimum Mean Std. 
Deviation 

Incidence rate a 42.53 0.03 8.68 11.12 
Hospital admissions rate a 25.71 0.03 4.16 6.45 
Intensive Care Unit (ICU) 

admissions rateb 
15.76 0.00 2.54 3.98 

Mortality rateb 49.22 0.00 10.30 12.91 
Cumulative average incidence 

over 14 days 
2225.0 7.3 645.0 684.2 

Leq24 h (dB(A)) 61.3 51.1 55.7 2.4 
PM10 (μg/m3) 85.1 5.1 15.8 12.2 
NO2 (μg/m3) 57.3 2.5 18.8 13.6  

a Cases per 100,000 inhabitants. 
b Cases per million inhabitants. 

Fig. 1. A) Temporal evolution of incidence rate; hospital admissions rate; 
intensive care unit admission rate, and mortality rate from February 1, 2020 to 
May 31, 2020. All in cases per 100,000 inhabitants. B) Temporal evolution of 
average cumulative incidence over 14 days. 
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infections seems to be asymptomatic, while a substantial number of 
symptomatic cases remained untested”. It is currently estimated that in 
this period only 10 percent of true cases were detected. On the other 
hand, the severity of the cases detected could also explain the effects in 
short-term lags for the case of NO2 in terms of incidence, hospital 

Fig. 2. Temporal evolution of: A) Daily mean concentration of NO2 and PM10 
(μg/m3); B) Leq24 h (dB(A)). 

Table 2 
Pearson correlation coefficients. ** significance p < 0.01   

NO2 PM10 Leq24 h 

NO2 1 0.519** 0.672** 
PM10 0.519** 1 0.391** 
Leq24 h 0.672** 0.391** 1  

Table 3 
Lags in which statistically significant associations are established between the 
daily values of the independent variables and the analyzed COVID-19 variables.   

Leq24 h 
(dB(A)) 

PM10 (μg/ 
m3) 

NO2 (μg/ 
m3) 

Incidence rate Single 
Variable 

7/10 12 0/14/21 

All 
Variables 

7/10 Without 
effect 

Without 
effect 

Cumulative average 
incidence over 14 days 

Single 
Variable 

17 25/28 Without 
effect 

All 
Variables 

17 25/28 Without 
effect 

Hospital admissions rate Single 
Variable 

17 20 5/19 

All 
Variables 

24 Without 
effect 

5 

Intensive Care Unit 
admissions rate 

Single 
Variable 

22 14/19 21/28  

All 
Variables 

22 Without 
effect 

28  

Table 4 
Lags in which statistically significant associations are established between the 
values averaged over 14 days of the independent variables and the analyzed 
COVID-19 variables.   

Leq24 h 
(dB(A)) 

PM10 (μg/ 
m3) 

NO2 (μg/ 
m3) 

Incidence rate Single 
Variable 

7 11 13 

All 
Variables 

7 11 13 

Cumulative average 
incidence over 14 days 

Single 
Variable 

11 15 Without 
effect 

All 
Variables 

11 15 Without 
effect 

Hospital admissions rate Single 
Variable 

12 14 28 

All 
Variables 

12 14 Without 
effect 

Intensive Care Unit 
admissions rate 

Single 
Variable 

12 20 21/28  

All 
Variables 

22 Without 
effect 

21  

Table 5 
Relative risks corresponding to final models with all the independent variables. 
The RR correspond to an increase of 1 dB(A) in Leq24 h values and 10 μg/m3 of 
PM10 and NO2 concentrations.   

DAILY VALUES AVERAGED VALUES 
(0–14 DAYS) 

Incidence rate Leq24 (7) RR: 1.24 
(1.18 1.30) 
Leq24 (10) RR: 1.07 
(1.03 1.13) 

Leq24 (7) RR: 1.29 (1.11 
1.50) 
PM10 (11) RR: 1.33 (1.03 
1.73) 
NO2 (13) RR: 1,45 (1,14 
1,76) 

Cumulative average incidence 
over 14 days 

Leq24 (17) RR: 1.01 
(1.00 1.02) 
PM10 (25) RR: 1.01 
(1.00 1.01) 
PM10 (28) RR: 1.01 
(1.00 1.01) 

Leq24 (11) RR: 1.28 
(1.20 1.36) 
PM10 (15) RR: 1.09 (1.06 
1.12) 

Hospital admissions rate Leq24 (17) RR: 1.07 
(1.00 1.02) 
NO2 (5) RR: 1.12 
(1.01 1.24) 

Leq24 (12) RR: 1.22 
(1.01 1.48) 
PM10 (14) RR: 1.56 (1.06 
2.20) 

Intensive Care Unit 
admissions rate 

Leq24 (22) RR: 1.13 
(1.04 1.22) 
NO2 (28) RR: 1.12 
(1.02 1.22) 

Leq24 (12) RR: 1.73 
(1.38 2.19) 
NO2 (21) RR: 1.43 (1.08 
1.89)  
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admissions and ICU admissions (Linares et al., 2021). 
Fig. 2A and B clearly show a decrease in the concentrations of the 

pollutants and noise levels in Madrid during the period analyzed. If the 
values of the first and last week of the study period are compared, there 
was a decrease in the concentrations of 34.5 percent for PM10 and 66.8 
percent for NO2 (Linares et al., 2021). In the case of Leq24 h, the 
decrease between the first and final weeks was 3 dB(A), and the decrease 
reached 5.4 dB(A) for some periods during the strictest parts of the 
confinement. These results agree with the decreases observed in the city 
of Madrid in other studies that estimated a decrease of between 4 and 7 
dB(A) for different zones in the city (Asensio et al., 2020). 

In terms of the meteorological variables, the GLM models show that 
the coefficients related to COVID-19 variables are negative. That is to 
say, low and humid temperatures are related to higher incidence rates. 
On the other hand, the serological study of the prevalence of SARS-CoV- 
2 in Spain (ENE-COVID) (Pollán et al., 2020) indicates that a lower 
prevalence of COVID-19 in Spain was produced in coastal regions that, 
during the time of the study and in general, are characterized by higher 
temperatures and humidity than the interior areas of the peninsula 
(AEMET, 2020). 

The decrease in automobile traffic was the primary cause of the 
decreases that occurred in both air pollutants and noise pollution. 
Automobile traffic is the primary cause of noise in large cities (Navares 
et al., 2020). This common source explains the collinearity found be-
tween NO2 and Leq24 h shown in Table 2. In the case of PM10 this 
collinearity decreased in a clear way, although it maintained statistical 
significance due to the fact that, during the period, both PM10 and 
automobile traffic were amplified by the intrusion of natural-origin 
Saharan dust at the end of February of 2020 (MITECO et al., 2020). 
This can be observed in the registered increase of more than 80 μg/m3 in 
Fig. 2a. 

However, the most noteworthy result of this study is the robust as-
sociation found between noise levels and the COVID-19 variables 
analyzed, with the exception of mortality. 

Table 3 shows the lags for which there was an association established 
between daily values and the COVID-19 variables analyzed. First, the 
incidence rate for lags 7 and 10 is coherent with the time necessary for 
the incubation period of the disease and the onset of symptoms, estab-
lished between 2 and 12 days after contracting the disease (Lauer, 
2020), and the days that pass prior to the worsening of symptoms and 
consequent hospital admission (MSCBS, 2020b). In our case, hospital 
admissions were produced in lag 17, which would account for those 
people who, once infected, experienced worsening of their symptoms 
and had to go to the hospital, and finally, for those people for whom 
symptoms became so severe that they had to be admitted to the ICU. 

There are three possible mechanisms that could explain these asso-
ciations between noise levels and the incidence and severity of COVID- 
19 measured through hospital admissions and ICU admissions. 

On one hand, noise is capable of influencing the immune system 
through three factors, one of which is the stressful nature of noise (Recio 
et al., 2016). The association between noise and psychological stress and 
the occurrence and worsening of respiratory diseases has been thor-
oughly studied (Aich et al., 2009). The hypothalamus activates the ad-
renal medullary and the sympathetic arm of the autonomic nervous 
system, starting SAM regulation with an increase in blood flow to the 
muscles, an increase in blood pressure and in heart rate and respiratory 
rate, along with a decrease in gastro-intestinal activity. The hypothala-
mus then activates the adrenal cortex, which releases cortisol and other 
glucocorticoids. Among other activities, glucocorticoids are responsible 
for ensuring the flow of blood glucose to the brain and for elevating or 
stabilizing blood glucose levels, for mobilizing protein reserves, or 
regulating the immune system (Irwin 2012). 

Second, sleep alterations are produced by nighttime noise. Studies 
carried out in animals and humans have found associations between 
sleep wave cycles and the neuroendocrine and immune systems (Majde 
and Krueger, 2005). Sleep inhibits several structures of the central 

nervous system, so the activity of the cortical connections is greatly 
reduced to seek the isolation of the outside world. Both during and out of 
sleep the limbic system is on permanent alert, configuring the primary 
emotions that the hippocampus contributes to modeling through 
memory. During sleep these unconscious emotions can cause autonomic 
awakenings and activate the hypothalamus, disturbing the REM phase 
by background noise, or the phases of deep sleep or slow waves (SWS) by 
noise peaks (Pirrera et al., 2010). 

Third, there is the impact of oxidative stress. Inflammatory processes 
associated with psychological stress as a result of traffic noise are one 
source of oxidative stress. Oxidative stress has the effect of a reduction in 
antioxidants during the immune response and the promotion of infec-
tious diseases (Trefler et al., 2014). In addition to debilitating the im-
mune system, there are numerous studies that link short and long-term 
noise to morbidity and mortality related to respiratory and cardiovas-
cular illnesses and diabetes. The WHO guide (WHO, 2018) highlights the 
quality of evidence between exposure to traffic noise and incidence of 
diabetes is moderate, based on a cohort study (Van Kempen et al., 2018). 
New cohort studies in Switzerland (Eze et al., 2017) and in Barcelona, 
Spain, shows that long-term exposure to noise is related to increased 
diabetes mortality (Barceló et al., 2016). The WHO guides (WHO, 2018) 
highlight the quality of evidence between exposure to traffic noise and 
incidence of diabetes is moderate, based on a cohort study (van Kempen 
et al., 2018). New cohort studies in Switzerland (Eze et al., 2017) and in 
Barcelona, Spain, shows that long-term exposure to noise is related to 
increased diabetes mortality (Barceló et al., 2016). Short-term exposure 
to traffic air pollution has been related to nighttime noise in Madrid, 
Spain (Tobías et al., 2015b). 

These are diseases that are associated with poor prognosis in patients 
who have been diagnosed with COVID-19 (Hu et al., 2020; Arentz et al., 
2020; Zhou et al., 2020). Short-term noise is related to hospital emer-
gency admissions due to both cardiovascular and respiratory diseases 
(Tobías et al., 2001). However, it is also related to short-term mortality 
due to circulatory, respiratory and metabolic issues (Recio et al., 2017; 
WHO et al., 2018; Linares and Díaz, 2019), especially for those over age 
65 (Recio et al., 2017), which is the population for which COVID-19 has 
had the greatest incidence in many countries in Europe (Remuzzi et al., 
2020) and in Spain (RENAVE, 2020). These are the same mechanisms 
that underlie the associations found with air pollution (Linares et al., 
2021; Domigo and Rovira, 2020; Frontera et al., 2020; Zoran et al., 
2020). 

Furthermore, there is another factor that can explain a role of noise 
beyond the associations based solely on the biological mechanisms 
already mentioned, which is that noise is an indicator of human activity, 
especially in large cities (Linares and Díaz, 2007). Noise is a reflection of 
the number of automobiles that circulate in the city (Navares et al., 
2020), and it also accounts for the presence of people in the streets and 
activity in leisure areas (Asensio et al., 2020). Therefore, noise can 
explain factors related to vehicle mobility and human activity that is 
related to the transmission of COVID-19. Furthermore, this type of 
pollution is less dependent on meteorological conditions than air 
pollution. 

In other words, noise is an indirect indicator of an increase in human 
activity, which could indicate a greater risk COVID-19 transmission, a 
greater increase in the incidence of cases and a greater number of severe 
cases among vulnerable groups. 

This added effect of noise pollution that is similar to the short-term 
effect of NO2 or PM10 could explain why noise shows associations 
with all of the COVID variables considered (with the exception of 
mortality), which is something that does not occur in the case of the air 
pollutants, as shown in Table 3. 

The results in Table 4 that refer to the 14-day average values serve to 
justify the findings related to the daily values, and to support their 
robustness. The fact that the associations found for the daily values are 
also found for the averaged values indicate that they are not due to 
seasonal factors that are similar between the dependent and 
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independent variables. 

4.1. Strengths and weaknesses of this study 

One of the principal strengths of this study is the length of the series. 
Even though the series length is 121 days, or four months, it is greater 
than the majority of the studies carried out to date. On the other hand, 
the period analyzed corresponds to a period that includes a time both 
pre-state of alarm and during the state of alarm, with homogeneous 
restrictions applying to the entirety of the zone of the study. The entire 
area considered in the study was subjected to the same conditions in 
terms of “physical distancing and other public health interventions” 
(Villeneuve and Goldberg 2020). 

The duration of the series allowed for carrying out generalized linear 
models with control variables such as trend, seasonalities and autore-
gressive components. Furthermore, it allowed for carrying out multi-
variate models that included both pollution variables and noise while 
accounting for the collinearity among them. 

On the other hand, the Province of Madrid has 6,685,471 in-
habitants, 49 percent of whom live in the city of Madrid, which has an 
air pollution and noise measurement network made up of 30 measure-
ment stations. In the rest of the area, there are 22 fixed stations that 
measure noise. In other words, there are 52 stations for a territory of 
8000 Km2. As such, the spatial allocation is important (one station for 
every 1.7 km) and provides a high level of representativeness to the 
measures of the independent variables (Villeneuve and Goldberg 2020). 

In addition, for much of the analysis period, the population was 
confined to their homes. Mobility was greatly reduced, so the exposure 
of people was not as variable as it would be during a period of normality. 

Another of the study strengths is the robustness of the results, first 
among the lags for which associations were established, which are 
coherent with the biological mechanisms that link the different variables 
analyzed and the incidence and severity of the disease to the incubation 
period and the course of the disease. In addition, associations were not 
established only with a single indicator, but rather among four in-
dicators, with coherent results among them. This robustness also applies 
to the multivariate models and to the results obtained for both the daily 
series and the averaged series. 

This study used an ecological time series design, which includes all 
the epidemiological limitations inherent in this type of study, especially 
the ecological fallacy, which is a weakness of the study, since it is 
impossible to know which of the three possible hypotheses that associate 
noise with the COVID-19 variables is the one that truly explains the 
association. The fact that authors have performed the analysis for the 
Madrid geographical area as single area, means they cannot compare 
among different zones with diverse characteristics, as demographic or 
socioeconomics variables, as it is conducted in other studies (Saez at al. 
2020; Ahmadi et al., 2020; Coccia et al., 2020; Pequeno et al., 2020). 

In the analysis all the variables were averaged, weighted by popu-
lation. However, not all inhabitants in the small area or bigger area 
actually had these mean values of the variables, leading to a measure-
ment error, most likely random. If the explanatory variables are 
measured with error, the estimators will be inconsistent (Greene, 2018). 
Nevertheless, if the between-area variability of the variable measured 
with error is much greater than the within-area variability of such var-
iable then the effect of measurement error on the estimator consistency 
may be negligible (Elliott and Savitz, 2008). In our case, the Madrid 
region is an administrative unit that, in most cases, is quite heteroge-
neous. In any case, when, as in the region, this criterion is not met, the 
presence of measurement errors tends to underestimate the effect of the 
variable measured with error (Saez et al., 2020). 

On the other hand, paradoxically, the length of the series could be 
considered a weakness, because it only accounts for a period of four 
months, without taking into account complete annual variation. 
Furthermore, the time period is totally anomalous in terms of the 
decrease in the pollutants and in noise as well as human confinement, 

therefore the exposure to the external environmental variables repre-
sents an important bias. On the other hand, the conditions under which 
the data were obtained corresponds to a time in which the case defini-
tion was only registered when people already presented important 
symptoms of the disease. 

The two points mentioned imply the need for prudence in extrapo-
lating the results of the study to points in time other than those in which 
the study was carried out. Future studies will analyze, together and with 
more depth, the impact of climate variability, air pollution and other 
extrinsic factors in COVID-19 transmission. They should also be able to 
consider other important factors that were not considered here, such as 
the connectivity between places with high incidence, patterns of social 
relationships, the susceptibility of the population, and surveillance data 
on respiratory infections, for example. 

5. Conclusions 

The results obtained in this study show that the noise measured 
through the Leq24 indicator are related to the incidence and severity of 
COVID-19 in the Province of Madrid. This effect is independent of that 
found for air pollution and predominant in relation to the effect of NO2 
and PM10. 
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revision of the manuscript. José A López-Bueno. Providing and Analysis 
of data; Elaboration and revision of the manuscript. Dante Culqui. 
Epidemiological study design. Elaboration and revision of the manu-
script. César Asensio. Providing and Analysis of data; Elaboration and 
revision of the manuscript. Gerardo Sánchez-Martínez. Epidemiological 
study design. Elaboration and revision of the manuscript. Cristina 
Linares. Original idea of the study. Study design; Elaboration and revi-
sion of the manuscript. 

Declaration of competing interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

The authors gratefully acknowledge ENPY 221/20 project grant from 
the Carlos III Institute of Health. 

References 
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Linares, C., Belda, F., López-Bueno, J.A., Luna, M.Y., Sánchez-Martínez, G., Hervella, B., 
Culqui, D., Díaz, J., 2021. Short-term effect of air pollution and meteorological 
variables on the incidence and severity of COVID-19 during the state of alarm in 
Spain: the case of Madrid. Environ. Res. (Press).  

Lipsitch, M., 2020. DPhil seasonality of SARS-CoV-2: will COVID-19 go away on its own 
in warmer weather? Center for communicable disease dynamics. Harvard T.H. Chan 
School of Public Health. https://ccdd.hsph.harvard.edu/will-covid-19-go-away-on-it 
s-own-in-warmer-weather/. 

Majde, J.A., Krueger, J.M., 2005. Links between the innate immune system and sleep. 
J. Allergy Clin. Immunol. 116, 1188–1198. 

MITECO, 2020. Ministerio para la Transición Ecológica. https://www.miteco.gob.es/es/ 
calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-del-a 
ire/evaluacion-datos/fuentes-naturales/Prediccion_episodios_2020.aspx. 

MSCBS, 2020a. Ministerio de Sanidad, consumo y bienestar social. https://www.mscbs. 
gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos/Actuali 
zacion_122_COVID-19.pdf. 

MSCBS, 2020b. Ministerio de Sanidad, consumo y bienestar social. https://www.mscbs. 
gob.es/profesionales/saludPublica/ccayes/alertasActual/nCov/documentos 
/20200417_ITCoronavirus.pdf. 

Navares, R., Aznarte, J.L., Linares, C., Díaz, J., 2020. Direct assessment of health impact 
from traffic intensity. Environ. Res. 184 (C), 109254. 

Ogen, Y., 2020. Assessing nitrogen dioxide (NO2) levels as contributing factor to 
coronavirus (COVID-19) fatality. Sci. Total Environ. https://doi.org/10.1016/j. 
scitotenv.2020.138605, 0048-9697.  

Pequeno, P., Mendel, B., Rosa, C., Bosholn, M., Souza, J.L., Baccaro, F., Barbosa, R., 
Magnusson, W., 2020. Air transportation, population density and temperature 
predict the spread of COVID-19 in Brazil. PeerJ 8, e9322. https://doi.org/10.7717/ 
peerj.9322, 2020.  

Pirrera, S., De Valck, E., Cluydts, R., 2010 Jul. Nocturnal road traffic noise: a review on 
its assessment and consequences on sleep and health. Environ. Int. 36 (5), 492–498. 
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